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In 1829 Gauss found and described [1 ] a remarkable property of material
systems, namely to move with least constraint. Gauss discovered this
property in connection with a transformation of material systems. The
Gauss transformation consisted of a relaxation [removal ] (the terminol-
ogy stems from here) of all the constraints of the systems. After Gauss
attempts were made to find other forms of relaxation where a property
similar to that formulated by Gauss would hold.

In his "Mechanics® Mach noted that the property of least constraint,
which holds for systems with complete relaxation, possibly also holds
for a relaxation of only a part of their constraints (partial relaxation
of material systems). This assumption by Mach was verified by E.A. Bolo-
tov, who proved it for a system with linear differential constraints of
the first order [2 ]. Later on this case was also extended to a system
with nonlinear constraints [31].

In 1933 N.G. Chetaev [4 ] developed a new point of view on the re-
laxation of material systems. He proposed to apply the term, relaxation,
to any system transformation which satisfied some mathematical algorithm
(parametric relaxation of material systems). N.G. Chetaev added to his
proposition a proof of a corresponding minimum theorem.

In the present paper the problem of the relaxation of a material
system is studied from the qualitative point of view. A sufficiently
broad qualitative definition of the relaxation of a system is given, and
a corresponding minimum theorem is established, after which its mathe-
matical algorithm is derived from the given qualitative definition of the
material systenms.

A continuous numbering of the geometric and kinematic parameters of
the system (coordinates xz, velocities x”, accelerations x=” ) and also
forces acting on the system is used in this paper. The indices utilized
in the paper run through the following values:
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rd
i=1,...,3n; a=4,...,7; B=1,...,s A=1,...,r; p=1, 00048

Here n is equal to the number of points of the material systems studied,
the actual meaning of the values r, &, r’, s’ will be clear from the
text.

1. We shall call a Chetaev system all possible material systems with
constraints of the form

f.(t,zi,xi') =0 (1.1)
for which *"possible displacements® are given by the relations

3n afs

Z 5z 82, =20 (1.2)

i=1
The Chetaev systems may be outlined completely if one notes that
Gauss’ principle [4] holds for every one of them, and that these systems
are unique among the material systems with constraints of the form (1.1),
for which Gauss’ principle [5] holds in general.

We shall assume that the system in its given state is more relaxed if
in this state the multiplicity of the accelerations which it can acquire
in actual motion is enlarged. In relation to this we shall apply the
term, relaxation of the material system, to any transformation of it
which, without narrowing down the multiplicity of the allowable states
of the system, makes the system more relaxed in each one of its given
states.

(Note. The notion of *enlargement® in this formulation is understood
as a "supplement®, and thus all states and accelerations, allowable for
the basic system, are assumed also to be allowable for the relaxed
system. )

Such a qualitative notion of the relaxation of material systems is
already completely sufficient for the establishment of the property of
Chetaev systems, similar to that formulated by Gauss.

Actually, let A be some Chetaev material system. Then assume that some
system B is obtained by a relaxation of the system 4, and system B is
such that its ®allowable displacements® include all *allowable displace-
ments® of system A.

(Note. It will be shown below that if system B is also a Chetaev
system, then the "allowable displacements” of the original system wiil
also be found among the "allowable displacements” of the latter. The last
remark ceases to be essential for this case).

Let us denote by u), ..., uy the actual accelerations of system 4,
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by vj, ..., vs, its virtual [4] accelerations. System B is more relaxed,
and thus its actual accelerations may differ from the actual accelera-
tions of system A. Let us denote them by Wy, eees Wy Furthermore, we
denote by 8x,, ..., 8x4, the "possible displacements of system A and by
8*x), ..., 8*x,, the possible displacements" of system B. Finally, we de-
note by X, ..., X3, the forces* which act on systems A and B.

We write for each one of the studied systems the fundamental equation
of mechanics

1 sn
Z (m,-ui —_ X{) Sxi = 0, Z (miw,- —_ Xt) 8*21‘,' =0 (13)
i=1 i=1
According to the condition we have
8x; ¢ 8'x;

Thus, equations (1.3) can be written in the following fashion:

3n 3n
2} (miu; — X;) 8x; = 0, 2 (mw; — X)) 8z; = 0
i=1 i=1
By subtracting the second equation from the first, the terms with the
forces are eliminated, and we obtain

sn
2, my (U; — wy) by = 0 (1.4)
i=1
On the other hand, since system A is a Chetaev system, then
8x; = u;— v;

These equations allow us to rewrite relation (1.4) as
m
E my (Ui —wy) (Wi —vy) =0
=1

The last relation reduces to the form
Ay — Ao + Apu =0 (1.5)

Here the expression for 4, is of the form
sn m,
5 i — )
i=1
and the expressions for A__ and A

are obtained from A, by a cyclic
permutation of the variables.

* During relaxation of a material system the forces acting upon it do
not change.
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The value of A, is not negative, thus it follows from Equ:tion (1.5)
that
Auw < Asw

The values A,, and A are called, respectively, the measures of devi-
ation of the actual and the virtual motions from the motion of the re-
laxed system. In the case of complete relaxation this concept coincides
with the Gaussian concept of system relaxation. Thus we have the follow-
ing theorem.

Theorem. If a material system 4 is a system of the Chetaev type, and
a system B is obtained by relaxation of the system A and the "possible
displacements* of system B contain all the *possible displacements* of
system A, then the law of least deviation of the actual motion of the
system from the relaxed system holds (generalized Gauss’ principle).

Let us turn now to the derivation of the mathematical algorithm from
the qualitative definition of the relaxation of mgterial systems given
above. Let us limit ourselves to the case where the relaxation of the
Chetaev system to be studied takes place in a class of systems with con-
straints of the form (1.1).

2. (a) Take some arbitrary material system of the Chetaev type. Denote
the Lagrangean coordinates of the system by q,, ..., q,; let p,, ..., P,
be those of the generalized velocities which are assumed to be indepen-
dent. Then because of the constraint equations of the studied system we
can write [3 ]

xi:al'(t-qlv""qr), zi'=bi(t»‘hn--,Qr,l’h---,Pu) ‘21)

The right-hand sides of Equations (2.1) are assumed to be differenti-
able functions of all arguments shown.

(Note., Equations

' =8 g1, oo s Pl - -2 0P,) {(22)
can be written in another form.

All coordinates ¢ are actually written out on the right-hand sides of
these equations. However, this does not mean yet that they all should be
there., In particular cases some and even all 9, Way drop out from the
right-kand sides of Equations (2.2). With this case in mind and also con-
sidering the fact that it is not known beforehand which qa' will be
chosen to be independent, Equations (2.2) can be rewritten as

zi"——-' b{ (ti G1r e vy Gps 91', seey Qr') (2°3)

with the essential limitation, however, that the dependent derivatives
qa’ drop out of these equations. Such a notation possesses symmetry and
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this is a very important property.

The dependent values qa' are known to drop out of Equations (2.3).
Further, some qq may drop out of these Equations. Thus, it is entirely
possible that some of the g, which drop out of equations (2.3) drop out
together with their derivatives. In such cases (having changed if
necessary the numbering order of the variables ¢) one can write instead
of (2.3) the equations

z=b(tqn- s Pt q) (2.4)

where k< r, and all coordinates shown in these equations are represent-
ed by at least their derivatives. Such a way of representing the multi-
plicity of the real velocites of the system in the problem of analysing
the relaxation of material systems was used by N.G. Chetaev [4].)

Together with system A let us study some arbitrary material system
which is obtained by means of a relaxation of system A. We denote it by
the letter B. According to the assumption, the constraint equations of
system B should be of the form (1.1). Thus, some description of the form
(2.1) should hold for system B, as well as for system A. Assume that it
is

G=a"(t 0., 00, 2 =b'(t,0r...,0p Py ..., Ps) (2.5

The quentities Q,, ..., Q » in these equations are the Lagrangean co-
ordinates of system B, t.he parameters P, ..., P, are those of the ge-
neralized velocltles of the system B wluch are taken to be independent.
The functions a;*, b,* are assumed to be differentiable with respect to
all arguments, as in the case of system 4.

(b) The multiplicity of the positions of system A depends on r inde-
pendent parameters and the multiplicity of the positions of system B on
r’ independent parameters. System B is obtained by a relaxation of 4.
Thus

r>r (2.6)

On the other hand, since system B is obtained by relaxation of system
A the multiplicity of its virtual accelerations in its arbitrary state,
which is permissible in the concept of system 4, should be at any given
instent larger than the multiplicity of the virtual accelerations of
system A, which was analyzed in the same state at the same instant. From
this follows the relationship between s and s’.

Indeed, after differentiating, with respect to time, the expressions
for the velocities x;” of the basic and correspondingly of the relaxed
system, and then expressing in the resulting equations the generalized
velocities g° by means of the parameters p and the generalized velocities
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Q" by means of the parameters P, we obtain the equations
s s
z'=¢all,q, p) + 2‘, ciﬂ(tr q,p) pﬁ” = ¢, 0, P) + ZC‘F. @, Q’ P) pl‘-'
B=1 pe= 2.7
for the basic and the relaxed systems, respectively. The derivatives p’
and P’ do not depend on the values of the remaining parameters. Thus, in
every state which is admissible for both systems under consideration, the
multiplicities of the virtual accelerations of the basic and the relaxed
systems depend on s and s’ independent parameters, respectively. Thus,
we have

r>r, s'>s (2.8)

From these inequalities it also follows that within the framework con-
sidered, the relaxation of the Chetaev system is always accompanied by a
reduction of the number of equations of constraint of this system.

(c) Because of the properties of relaxation, all states that are
admissible for system B should be admissible for system A. Thus, for an
arbitrary system of values ¢,*, ..., ¢.* p;* ..., p,* at an arbitrary
instant t a system of values Q,*, ..., Q* P,*, ..., P" should exist,
such that the following equalities are satisfied:

ai. (tn Ql" sy Qr'.) =4a; (ta ql.1 MR ] Qr')
hi‘(t:Ql‘....,Qr", Pl.v"'vPC'.)=bi(tvq1‘)°"’qr.’pl.""’p‘.)

In other words, the functions
Fl‘ (t’ qlv c sy Qr). (I)P-. (tv ql; LB 1qrv plr “e ey pl)

should exist where the equations
a‘i‘(t’Fl.v' .. 1Fr’.) =ai(t,91, s ,Qr)
b‘l. (tyFl.y ce oy Fr"» (Dl.s sy ml'.) = b‘i (ts q1y -+« s qrs P1y .-+, Ps) (29)

are satisfied identically for all arguments.
Let us find these functions.

Because of Equations (2.5) the parameters Q are differentiable func-
tions of time and some r’ coordinates x (let x,, ..., z_.) and the para-
meters P are differentiable functions of time, coordinates Xys vees X0
and some s’ velocities L IR I (let % ..., x‘r’):

01 = fl (t, Ly, o ,zrl), PP = ?p- (t, /1, oo ,/r', zl’, . ey z,:') (2.10)

We will show that the functions
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F).' =jx(t,a1, e ,a,:), (Dp,‘ =Cpp(t,F1., PN ,F,-l‘, bl; [N ,bsl) (211)

satisfy Equations (2.9), depend on all ¢ and p, and are thus the unknowns.
Actually, the following identities hold:
xl-—z——al‘ (t’fly e vj"')’ xM,Ebl‘-. (t,/h s s/f‘” P1y - (PS')
A=1,...,r,nu=1,..., s")
They are not violated when x; and x.” are replaced by the values from
(2.1). Mus
a (@ By, ..., Fly=a, by (t, Fi's oo, F5,00, .., D )==0b,

On the other hand, the constraint equations of system B will be be-
cause of the equations (2.5) and (2.10)

Tr41 = a:’+1 (t’ fl' e ey fr’), .
T =y G e h e ) (2.12)
System B is obtained by the relaxation of system A. Thus, Equations

(2.12) should be satisfied identically if x; and x,” are replaced in them
by the expressions (2.1), i.e.
a;l+1 (to F1‘1 vy F,-")E Apiggy » o 2
b:,+1 (t, Fl" o« s ey F,-", (Dl‘) .0y 0.");—_‘“ b.’+1, .

Thus, it is proved that functions (2.11) satisfy the identities (2.9).
From these identities it is obvious that the functions F)* should depend
on all g and the functions (I)P * on all p. This completes the proof.

The numbers r, s, r’, s’ are restricted by the inequalities
r<r, s<Ls

This means that there are not more parameters g than parameters Q and
there are known to be fewer parameters p than parameters P.

Let us supplement the system of parameters ¢ to the number r’ and the
system of parameters p to the number s’ by means of the independent para-
meters £ and n, and let us perform the following change of variables in
Equations (2.5):

Ql S Fx (t, Gy, - - s 4r, El’ e ey Er'—-r)
Pu. = (Du.(t; g1y - +14rs El, R Er'— ro Ply <« v s Pss Mty o+« ns’—l) (2~13)

where
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r'—r

Fa=F"4 X Fa(t, 9, P&y
ye=1
rie—r ¥—s

q)p. = (Dp,‘ '+' 2 (Dp,y(ty q, p) EY + 2 (I)P-;(t9 ql p)"‘s
2=1

v=1

and where the differentiable functions FAY , Q“y, Qﬂg are so chosen as
to satisfy the inequality

d(Fr, .. F oy @y ..., ®,)
3(011---yqp51:~--’Er'_r-Pl»---1Pp"h-~--»71,'_

570

Because of this inequality, the transformation (2.13) is not degene-
rate, and thus one can find for every allowable state of system B a
corresponding system of the values of parameters q, p, £, n. The converse
follows directly from Equations (2.13).

By substituting the expressions for Q and P from Equations (2.13) into
(2.5) we obtain
= Ai(ty Grs v oo s Qry E10 ooy Erey) (2.14)
' =Bty qrs - v @ry S5y oo Gy Poyee ey Por M oo ey Me'—s)

The right-hand sides of these Equations are such that they pass into
a, and b, respectively, if one sets all £ and 5 in them equal to zero.

Thus if system B is obtained by a relaxation of system A, then one
can write a description of it in the form (2.14).

On the other hand, it is not difficult to verify that if one can write
for any arbitrary system B a description of the form (2.14) then this
system is relaxed in relation to system A.

Thus we obtained the following mathematical algorithm of the relaxa-
tion of a Chetaev system.

In order to perform a relaxation of any material system of the Chetaev
type whose multiplicity of the admissible states is given by the equa-
tions

x; = a; (fl, i1y + o0y qr)’ xi' = bl (t' Q1r o2+ 3qry Pry - s pl) (215)

one should transform it in such a fashion that in the new system the
multiplicity of the admissible states be given by the equations

x; = Ai (ta g1y« v+ Gry E]v s eey Er’—r)
x"’ = Bi (t, Qh et ey qp, E], o sey Er’——n pl’ s eay p., ‘ﬂl‘ v e e 'ns'_.) (2.16)
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where £ and n are additional independent parameters, A; and B are in-
dependent quantities in their arguments and transform into the functions
a; and b;, respectively, if all £ and y are set equal to zero.

(d) The algorithm of the relaxation of material systems according to
Chetaev is included in the transformation of any given material system,
for which the description (2.4) is written for the multiplicity of the
real velocities of the system, into a form in which this multiplicity
would be given by the equations

xi’=bi(toQI’°--oq1taQ1',---vqk')+ pi(thI’-'-vqlnEh""Echl""HEc')

where £,, ..., fe, €)°y +evy £, are additional independent parameters
and their derivatives and the Functions B; are independent functions of
the given arguments which vanish when one lets all £ and £’ be equal to
zero.

Comparing this algorithm with that obtained in this paper, we see
that after the parameters p and n in Equatians (2.16) are expressed in
terms of parameters ¢, £ and their derivatives, the difference between
these algorithms reduces to the functions of different degrees of general-
ity used in the right-hand sides of Equations (2.16).

3. Let us return now to the problem of the "possible displacements®
of the basic and the relaxed systems in the case where both are Chetaev
systems,

As already noted above, the following equations hold for the Chetaev
system
8%.; = Ui — Vi (3. 1)

The values u; and v; are components of the actual and of any virtual
accelerations of the syst.em, respectively.

According to (2.7) they are expressed by the equations

®i=clt, g, p) + 2 et ¢ P) pao’ v=aclt,q p) + D cslts 3, P) pe’

Bax1 Ba=1

where Pﬂa denote the magnitudes of the values of PB corresponding to
the actual motion.

Thus
= Z CmOB (.32)

Ba=1

where og = Pﬁo' - pg are, obviously, independent. Assuming that
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ab,
Cip = a—p;

we rewrite equations (3.2) in the form
p

sz S A g (3.3)

The following theorem holds.

Theorem. If the basic and the relaxed system are both Chetaev systems
then the *possible displacements® of the basic system are always among
the "possible displacements® of the relaxed system.

Actually, let systems A and B be the basic and the relaxed systems,
respectively. Assume that for the first system the description (2.15)
and for the second one (2.16) holds. Then the following equations will
hold for the "possible displacements" of systems A and B, respectively:

ab aB
8:1:5 = 2 api og, xi 2 '—a-p—— p z 311:
=1

In the second group of equations, let all £, n and also m be equal to
zero. Denote this substitution by square brackets; then

dB a(B;] o 0b;
thi — [ i ] Q — \ g = 63‘
hed BE=1 é1 9Py B:‘ Pg f

Thus, if the conditions £ = 7 = # = 0 are satisfied, then the ex-
pressions for the "possible displacements® of the relaxed system trans-
form into the expressions for the "possible displacements” of the basic
system. This completes the proof.
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